

Welcome to TileServer GL’s documentation!

Contents:

	Installation
	Docker

	npm

	tileserver-gl-light on npm

	From source

	On OSX

	Usage
	Getting started

	Default preview style and configuration

	Reloading configuration

	Configuration file
	options

	styles

	data

	Referencing local files from style JSON

	Deployment
	Caching

	Securing

	Running behind a proxy or a load-balancer

	Available endpoints
	Styles

	Rendered tiles

	WMTS Capabilities

	Static images

	Source data

	TileJSON arrays

	List of available fonts

	Health check

Indices and tables

	Index

	Module Index

	Search Page

Installation

Docker

When running docker image, no special installation is needed – the docker will automatically download the image if not present.

Just run docker run --rm -it -v $(pwd):/data -p 8080:80 maptiler/tileserver-gl.

Additional options (see Usage) can be passed to the TileServer GL by appending them to the end of this command. You can, for example, do the following:

	docker run ... maptiler/tileserver-gl --mbtiles my-tiles.mbtiles – explicitly specify which mbtiles to use (if you have more in the folder)

	docker run ... maptiler/tileserver-gl --verbose – to see the default config created automatically

npm

Just run npm install -g tileserver-gl.

Native dependencies

There are some native dependencies that you need to make sure are installed if you plan to run the TileServer GL natively without docker.
The precise package names you need to install may differ on various platforms.

	These are required on Debian 9:

	
	build-essential

	libcairo2-dev

	libprotobuf-dev

tileserver-gl-light on npm

Alternatively, you can use tileserver-gl-light package instead, which is pure javascript (does not have any native dependencies) and can run anywhere, but does not contain rasterization features.

From source

Make sure you have Node v10 (nvm install 10) and run:

npm install
node .

On OSX

Make sure to have dependencies of canvas [https://www.npmjs.com/package/canvas] package installed:

brew install pkg-config cairo libpng jpeg giflib

Usage

Getting started

Usage: main.js tileserver-gl [mbtiles] [options]

Options:

 -h, --help output usage information
 --mbtiles <file> MBTiles file (uses demo configuration);
 ignored if the configuration file is also specified
 -c, --config <file> Configuration file [config.json]
 -b, --bind <address> Bind address
 -p, --port <port> Port [8080]
 -C|--no-cors Disable Cross-origin resource sharing headers
 -u|--public_url <url> Enable exposing the server on subpaths, not necessarily the root of the domain
 -V, --verbose More verbose output
 -s, --silent Less verbose output
 -v, --version Version info

Default preview style and configuration

	If no configuration file is specified, a default preview style (compatible with openmaptiles) is used.

	If no mbtiles file is specified (and is not found in the current working directory), a sample file is downloaded (showing the Zurich area)

Reloading configuration

It is possible to reload the configuration file without restarting the whole process by sending a SIGHUP signal to the node process.
However, this does not currently work when running the tileserver-gl docker container (the signal is not passed to the subprocess, see https://github.com/maptiler/tileserver-gl/issues/420#issuecomment-597507663).

Configuration file

The configuration file defines the behavior of the application. It’s a regular JSON file.

Example:

{
 "options": {
 "paths": {
 "root": "",
 "fonts": "fonts",
 "sprites": "sprites",
 "styles": "styles",
 "mbtiles": ""
 },
 "domains": [
 "localhost:8080",
 "127.0.0.1:8080"
],
 "formatQuality": {
 "jpeg": 80,
 "webp": 90
 },
 "maxScaleFactor": 3,
 "maxSize": 2048,
 "pbfAlias": "pbf",
 "serveAllFonts": false,
 "serveAllStyles": false,
 "serveStaticMaps": true,
 "tileMargin": 0
 },
 "styles": {
 "basic": {
 "style": "basic.json",
 "tilejson": {
 "type": "overlay",
 "bounds": [8.44806, 47.32023, 8.62537, 47.43468]
 }
 },
 "hybrid": {
 "style": "satellite-hybrid.json",
 "serve_rendered": false,
 "tilejson": {
 "format": "webp"
 }
 }
 },
 "data": {
 "zurich-vector": {
 "mbtiles": "zurich.mbtiles"
 }
 }
}

options

paths

Defines where to look for the different types of input data.

The value of root is used as prefix for all data types.

domains

You can use this to optionally specify on what domains the rendered tiles are accessible. This can be used for basic load-balancing or to bypass browser’s limit for the number of connections per domain.

frontPage

Path to the html (relative to root path) to use as a front page.

Use true (or nothing) to serve the default TileServer GL front page with list of styles and data.
Use false to disable the front page altogether (404).

formatQuality

Quality of the compression of individual image formats. [0-100]

maxScaleFactor

Maximum scale factor to allow in raster tile and static maps requests (e.g. @3x suffix).
Also see maxSize below.
Default value is 3, maximum 9.

maxSize

Maximum image side length to be allowed to be rendered (including scale factor).
Be careful when changing this value since there are hardware limits that need to be considered.
Default is 2048.

tileMargin

Additional image side length added during tile rendering that is cropped from the delivered tile. This is useful for resolving the issue with cropped labels,
but it does come with a performance degradation, because additional, adjacent vector tiles need to be loaded to generate a single tile.
Default is 0 to disable this processing.

minRendererPoolSizes

Minimum amount of raster tile renderers per scale factor.
The value is an array: the first element is the minimum amount of renderers for scale factor one, the second for scale factor two and so on.
If the array has less elements than maxScaleFactor, then the last element is used for all remaining scale factors as well.
Selecting renderer pool sizes is a trade-off between memory use and speed.
A reasonable value will depend on your hardware and your amount of styles and scale factors.
If you have plenty of memory, you’ll want to set this equal to maxRendererPoolSizes to avoid increased latency due to renderer destruction and recreation.
If you need to conserve memory, you’ll want something lower than maxRendererPoolSizes, possibly allocating more renderers to scale factors that are more common.
Default is [8, 4, 2].

maxRendererPoolSizes

Maximum amount of raster tile renderers per scale factor.
The value and considerations are similar to minRendererPoolSizes above.
If you have plenty of memory, try setting these equal to or slightly above your processor count, e.g. if you have four processors, try a value of [6].
If you need to conserve memory, try lower values for scale factors that are less common.
Default is [16, 8, 4].

serveAllStyles

If this option is enabled, all the styles from the paths.styles will be served. (No recursion, only .json files are used.)
The process will also watch for changes in this directory and remove/add more styles dynamically.
It is recommended to also use the serveAllFonts option when using this option.

watermark

Optional string to be rendered into the raster tiles (and static maps) as watermark (bottom-left corner).
Can be used for hard-coding attributions etc. (can also be specified per-style).
Not used by default.

styles

Each item in this object defines one style (map). It can have the following options:

	style – name of the style json file [required]

	serve_rendered – whether to render the raster tiles for this style or not

	serve_data – whether to allow access to the original tiles, sprites and required glyphs

	tilejson – properties to add to the TileJSON created for the raster data

	format and bounds can be especially useful

data

Each item specifies one data source which should be made accessible by the server. It has the following options:

	mbtiles – name of the mbtiles file [required]

The mbtiles file does not need to be specified here unless you explicitly want to serve the raw data.

Referencing local files from style JSON

You can link various data sources from the style JSON (for example even remote TileJSONs).

MBTiles

To specify that you want to use local mbtiles, use to following syntax: mbtiles://switzerland.mbtiles.
The TileServer-GL will try to find the file switzerland.mbtiles in root + mbtiles path.

For example:

"sources": {
 "source1": {
 "url": "mbtiles://switzerland.mbtiles",
 "type": "vector"
 }
}

Alternatively, you can use mbtiles://{zurich-vector} to reference existing data object from the config.
In this case, the server will look into the config.json to determine what mbtiles file to use.
For the config above, this is equivalent to mbtiles://zurich.mbtiles.

Sprites

If your style requires any sprites, make sure the style JSON contains proper path in the sprite property.

It can be a local path (e.g. my-style/sprite) or remote http(s) location (e.g. https://mycdn.com/my-style/sprite). Several possible extension are added to this path, so the following files should be present:

	sprite.json

	sprite.png

	sprite@2x.json

	sprite@2x.png

You can also use the following placeholders in the sprite path for easier use:

	{style} – gets replaced with the name of the style file (xxx.json)

	{styleJsonFolder} – gets replaced with the path to the style file

Fonts (glyphs)

Similarly to the sprites, the style JSON also needs to contain proper paths to the font glyphs (in the glyphs property) and can be both local and remote.

It should contain the following placeholders:

	{fontstack} – name of the font and variant

	{range} – range of the glyphs

For example "glyphs": "{fontstack}/{range}.pbf" will instruct TileServer-GL to look for the files such as fonts/Open Sans/0-255.pbf (fonts come from the paths property of the config.json example above).

Deployment

Typically - you should use nginx/lighttpd/apache on the frontend - and the tileserver-gl server is hidden behind it in production deployment.

Caching

There is a plenty of options you can use to create proper caching infrastructure: Varnish, CloudFlare, …

Securing

Nginx can be used to add protection via https, password, referrer, IP address restriction, access keys, etc.

Running behind a proxy or a load-balancer

If you need to run TileServer GL behind a proxy, make sure the proxy sends X-Forwarded-* headers to the server (most importantly X-Forwarded-Host and X-Forwarded-Proto) to ensures the URLs generated inside TileJSON etc. are using the desired domain and protocol.

Available endpoints

If you visit the server on the configured port (default 8080) you can see your maps appearing in the browser.

Styles

	Styles are served at /styles/{id}/style.json (+ array at /styles.json)

	Sprites at /styles/{id}/sprite[@2x].{format}

	Fonts at /fonts/{fontstack}/{start}-{end}.pbf

Rendered tiles

	Rendered tiles are served at /styles/{id}/{z}/{x}/{y}[@2x].{format}

	The optional @2x (or @3x, @4x) part can be used to render HiDPI (retina) tiles

	Available formats: png, jpg (jpeg), webp

	TileJSON at /styles/{id}.json

	The rendered tiles are not available in the tileserver-gl-light version.

WMTS Capabilities

	WMTS Capabilities are served at /styles/{id}/wmts.xml

Static images

	Several endpoints:

	/styles/{id}/static/{lon},{lat},{zoom}[@{bearing}[,{pitch}]]/{width}x{height}[@2x].{format} (center-based)

	/styles/{id}/static/{minx},{miny},{maxx},{maxy}/{width}x{height}[@2x].{format} (area-based)

	/styles/{id}/static/auto/{width}x{height}[@2x].{format} (autofit path – see below)

	All the static image endpoints additionally support following query parameters:

	path - comma-separated lng,lat, pipe-separated pairs

	e.g. 5.9,45.8|5.9,47.8|10.5,47.8|10.5,45.8|5.9,45.8

	latlng - indicates the path coordinates are in lat,lng order rather than the usual lng,lat

	fill - color to use as the fill (e.g. red, rgba(255,255,255,0.5), #0000ff)

	stroke - color of the path stroke

	width - width of the stroke

	padding - “percentage” padding for fitted endpoints (area-based and path autofit)

	value of 0.1 means “add 10% size to each side to make sure the area of interest is nicely visible”

	You can also use (experimental) /styles/{id}/static/raw/... endpoints with raw spherical mercator coordinates (EPSG:3857) instead of WGS84.

	The static images are not available in the tileserver-gl-light version.

Source data

	Source data are served at /data/{mbtiles}/{z}/{x}/{y}.{format}

	Format depends on the source file (usually png or pbf)

	geojson is also available (useful for inspecting the tiles) in case the original format is pbf

	TileJSON at /data/{mbtiles}.json

TileJSON arrays

Array of all TileJSONs is at /index.json (/rendered.json; /data.json)

List of available fonts

Array of names of the available fonts is at /fonts.json

Health check

Endpoint reporting health status is at /health and currently returns:

	503 Starting - for a short period before everything is initialized

	200 OK - when the server is running

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to TileServer GL’s documentation!

 		
 Installation

 		
 Docker

 		
 npm

 		
 Native dependencies

 		
 tileserver-gl-light on npm

 		
 From source

 		
 On OSX

 		
 Usage

 		
 Getting started

 		
 Default preview style and configuration

 		
 Reloading configuration

 		
 Configuration file

 		
 options

 		
 paths

 		
 domains

 		
 frontPage

 		
 formatQuality

 		
 maxScaleFactor

 		
 maxSize

 		
 tileMargin

 		
 minRendererPoolSizes

 		
 maxRendererPoolSizes

 		
 serveAllStyles

 		
 watermark

 		
 styles

 		
 data

 		
 Referencing local files from style JSON

 		
 MBTiles

 		
 Sprites

 		
 Fonts (glyphs)

 		
 Deployment

 		
 Caching

 		
 Securing

 		
 Running behind a proxy or a load-balancer

 		
 Available endpoints

 		
 Styles

 		
 Rendered tiles

 		
 WMTS Capabilities

 		
 Static images

 		
 Source data

 		
 TileJSON arrays

 		
 List of available fonts

 		
 Health check

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

